

Security Audit Report

NANO Foundation
07-01-2019

www.red4sec.com

Technical Vulnerability Report

RED4SEC Page 2

Contents

1. Introduction .. 3

2. Executive Summary ... 4

3. Scope and Purpose .. 6

4. Recommendations ... 8

5. Cryptography Assessment ... 9

5.1 Summary ... 9

5.2 Logical Deliverables ... 9

5.3 Coverage ... 10

5.4 Evaluating Nano’s Security Goals .. 11

5.5 Attack Scenario Evaluation ... 12

5.6 Real World Viability and Scalability Claims 13

5.7 Implementation Review ... 14

5.8 Impact and Attack Cost Evaluation .. 14

5.9 Conclusions .. 15

6. Network Performance Analysis ... 16

6.1 Summary ... 16

6.2 Nano Protocol ... 17

6.3 Performed Simulation Attacks ... 18

6.4 Conclusions .. 24

7. Source Code Vulnerabilities ... 25

7.1 Vulnerability Severity .. 25

7.2 Methodology... 26

7.3 Coverage ... 27

7.4 Automatic Analysis .. 29

7.5 Manual Analysis .. 30

7.6 List of vulnerabilities ... 32

7.7 Vulnerability details ... 33

8. Annexes ... 40

Annex A List of conducted tests .. 41

Technical Vulnerability Report

RED4SEC Page 3

1. Introduction

Nano is a cryptocurrency that offers no fees, near-instant transactions and

extremely high scalability. Unlike traditional cryptocurrencies which use

blockchains, Nano uses a novel block lattice approach, in which each account

has its own blockchain, and only the account owner can modify its blockchain.

Nano offers the following features:

• Each account has their own Blockchain.

• Wallets pre-cache the anti-spam PoW.

• Running a node cost next to nothing.

• Environmentally Friendly Cryptocurrency.

• Incredibly Lightweight with no fee for processing transactions.

This report has been performed by Red4Sec Cybersecurity as a security audit

and cryptographic assessment, which covers Nano with a great focus on

its cryptographic components, network and security protocols, source code and

configuration errors.

This audit includes all the tests performed and vulnerabilities discovered in

Nano by Red4Sec at the time of the audit.

This is a final and complete audit which includes:

• Nano Cryptographic Assessment.

• Network Performance Analysis.

• Source Code Audit.

All information collected here is strictly CONFIDENTIAL and may only be

distributed by NANO with Red4Sec express authorization.

Technical Vulnerability Report

RED4SEC Page 4

2. Executive Summary

As requested by Nano Foundation and as part of the vulnerability review and

management process, the company Red4Sec Cybersecurity has been asked to

perform a security audit and cryptographic assessment in order to assess the

security of the source code.

This security audit has been carried out between the dates: 24/10/2018 and

30/11/2018.

Once the analysis of the technical aspects of the environment has been

completed, the performed analysis shows that the audited source code

contains non-critical vulnerabilities that should be mitigated as soon as

possible.

On the other hand, the distributed denial of service simulation reflects great

network stability on the part of the Nano systems, although it could be

affected by more elaborate attacks.

Finally, after studying the whole project it has been possible to determine that

Nano presents a proper cryptographic implementation design.

During the analysis, a total of 3 vulnerabilities were detected. These

vulnerabilities have been classified in the following levels of risk according to

the impact level defined by CVSS (Common Vulnerability Scoring System):

Informative

Low

Medium

High

Critical

0 0,5 1 1,5 2 2,5

VULNERABILITY RESUME

Technical Vulnerability Report

RED4SEC Page 5

Red4Sec has been able to determine that the overall security level of the

asset is optimal, since no critical vulnerabilities have been detected and the

existing vulnerabilities do not compromise the security of the asset and their

users.

The general conclusions of the performed audit are:

• Nano presents a cryptocurrency design that does indeed achieve its
goals of high efficiency, high scalability and low latency through the

combination of cryptographic engineering and network engineering
considerations and optimizations.

• No critical risk vulnerabilities have been detected, given that the source
code of the project is correctly implemented and safe programming

guides have been applied.

• Since the entire code has not been reviewed, and since total security

does not exist, it cannot be guaranteed that vulnerabilities will not
appear in the future.

• The structure, style and organization of the code must be improved in
order to maintain the reputation and good image of the project

• None of the findings in this report constitute a serious roadblock for the
real-world deployment of Nano as a cryptocurrency ledger.

• Apply all proposed recommendations considered necessary to improve

the security of the Nano environment.

• In order to deal with the detected vulnerabilities, an action plan must be

elaborated to guarantee its resolution, prioritizing those vulnerabilities
of greater risk and trying not to exceed the maximum recommended

resolution times.

Technical Vulnerability Report

RED4SEC Page 6

3. Scope and Purpose

Nano has asked Red4Sec to perform an analysis of the project source code.

Red4Sec has evaluated the security level against computer attack,

identifying possible design, configuration or programming errors,

guaranteeing the confidentiality, integrity and availability of accessible,

treated, and stored information.

The scope of this evaluation includes:

• Description: Source Code Audit – Nano.

• Project Audited:

o Source Code Audit (https://github.com/nanocurrency/nano-node)

▪ Consensus Algorithm

▪ Transport Layer

▪ Business Logic Vulnerability Audit

▪ Check the correct function and behavior of the code.

▪ GitHub Audited Commit:

339afd767885a0f08254b3670a0c8accafb2be64

o Cryptographic Assessment.

o Network Performance Analysis.

Within this Scope, Red4Sec has prioritized in the following consensus

classes: rai::active_transactions and rai::election.

• https://github.com/nanocurrency/nano-node/blob/master/nano/node/node.cpp

• https://github.com/nanocurrency/nano-node/blob/master/nano/node/node.hpp

• https://github.com/nanocurrency/nano-node/tree/master/nano/secure

The duration of this audit has taken around 1 month.

• Source Code Audit:

24/10/2018 - 30/11/2018

• Final Report Documentation:

 30/11/2018 - 05/12/2018

• Mitigations Review:

 02/01/2019 - 07/01/2019

https://github.com/nanocurrency/nano-node
https://github.com/nanocurrency/nano-node/blob/master/nano/node/node.cpp
https://github.com/nanocurrency/nano-node/blob/master/nano/node/node.hpp
https://github.com/nanocurrency/nano-node/tree/master/nano/secure

Technical Vulnerability Report

RED4SEC Page 7

The specific objectives of the application review have been:

1. Analyze the source code of the project, in order to detect potential

vulnerabilities affecting the project, such as:

o Input Validation

o External calls

o Coding best practices

o Exception Handling

o Control of types and default values

o Algorithms and Cryptography

o Logic of the Program

o Denial of Services

o Memory Management

o Remote Code Executions

o Insecure Functions

o Manual analysis

o Automatic analysis

o Efficiency and Optimization

o Code Styling

o Non-functional requirements

In order to maintain the agreement made with the client, all those tests that

could cause an interruption of any kind in the service have not been executed.

Tests have been conducted from different points of view:

▪ Private (Beta) Network

▪ Clone Server

Technical Vulnerability Report

RED4SEC Page 8

4. Recommendations

For the resolution of the exposed vulnerabilities, the following actions are

recommended:

• Solve vulnerabilities in descending order of risk and take into

account the recommendations proposed by Red4Sec.

• Apply good practice techniques in source code and improve the
structure, style and organization of the code as far as possible.

• Update and/or periodically patch all services, libraries, and

technologies, especially those that belongs to third-parties.

• Apply safe development techniques, good practices and code styling

to the entire project, before being audited and reviewed again.

• Insist on the periodic review of services, applications and source

code, as well as correcting errors detected in previous reviews.

It is therefore recommended to include, in the system designs, safety

requirements that can be tested in later phases to apply safe programming

techniques and to introduce, in the pre-production stages, specific safety

tests, such as code revisions source or the one carried out in this project.

Technical Vulnerability Report

RED4SEC Page 9

5. Cryptography Assessment

Network security and cryptography is a subject too wide ranging to coverage

about how to protect information in digital form and to provide security

services. In this section, Red4Sec will be reviewing and auditing the

specifications and cryptographic implementations of Nano, a feeless

distributed cryptocurrency network.

5.1 Summary

Nano is a novel cryptocurrency with a “block-lattice” architecture that aims to

provide higher scalability, lower latency and higher power efficiency than

legacy blockchain systems such as Bitcoin.

Nano currently provides a whitepaper discussing design decisions, security

goals and justifying the system against a threat model. A C++ implementation

is also provided.

Red4Sec Cybersecurity has performed an audit of the Nano “feeless

distribution cryptocurrency network” based on the following provided

materials:

i. Nano: A Feeless Distributed Cryptocurrency Network, Colin LeMahieu.

ii. Nano cryptographic design elements as documented in the C++

implementation.

iii. Special focus on certain elements of the C++ implementation.

5.2 Logical Deliverables

In this report, we aim to analyze the following objectives:

1. Security goals: Does Nano achieve real-world security within the

security model of a blockchain-based cryptocurrency? Examples:

a. Do Nano wallets obtain authenticity and privacy according to the

design specified in the whitepaper and provided implementation

details?

b. Are Nano’s defenses against common attacks such as Sybil attacks

adequate?

2. Real-world viability: Performance analysis of Nano’s real-world

scalability.

Technical Vulnerability Report

RED4SEC Page 10

3. Implementation design review and recommendations: Review of

the implementation best practices for Nano (cryptographic primitives,

etc.) and whether these are adopted in the codebase.

5.3 Coverage

1. Nano Whitepaper

Goals:

• Higher scalability than Bitcoin.

• Lower latency than Bitcoin.

• Higher power efficiency than Bitcoin.

Components:

• Voting algorithm.

• “Block-lattice” design.

• Sequencing and confirming transactions via SYN/ACK over

UDP.

• Proof of Work.

• Account management and transfers.

2. C++ Implementation

Components:

• Ed25519 with Blake2b.

• Blake2b.

• Argon2.

• Wallets:

▪ Seed generation.

▪ Key derivation (BIP39/44).

▪ Encryption (AES-CTR).

Technical Vulnerability Report

RED4SEC Page 11

5.4 Evaluating Nano’s Security Goals

In this audit, special attention was invested in Nano’s claims and security

goals. While the Nano whitepaper does not explicitly state security goals, it

does provide a threat model (Section V) motivated by real-world attack vector

examples.

Based on these examples we assume that Nano aims to achieve the traditional

security properties inherent to a blockchain-based cryptocurrency: this

includes resistance to “double-spend” attacks, resistance to denial of service

attacks and resistance to malicious forks.

Within that framework, we found that Nano’s high-level design does achieve

the nominal expected security goals of a blockchain design. We nevertheless

identify the following points of discussion:

1. “Genesis balance” sacrifices mining for efficiency. Nano’s main

goals of obtaining high scalability, lower latency and higher power

efficiency than other cryptocurrencies appear to be largely facilitated not

simply by its innovative design but rather by the notion that a set

cryptocurrency value is instantiated at the genesis of the cryptocurrency.

Thus, no “mining” or generation of new cryptocurrency value ever occurs

in the lifetime of the cryptocurrency.

The Nano whitepaper does not address the concern that adding mining

abilities in the future might necessarily entail significant effects with

regards to the design’s scalability and efficiency.

2. Voting algorithm real-world usability. In the event of a fork, much of

Nano’s conflict resolution scheme relies on a voting system carried out by

all nodes. There are two factors that do not seem to be fully addressed

with regards the voting system proposed:

a. The real-world interface and usability of the voting algorithm is not

studied. Will users be able to meaningfully cast informed votes every

time there is a fork? How does this fit into the regular use case

scenarios involving Nano?

b. It appears that the voting algorithm would not be effective in the

common use case where a user obtains their view of the

cryptocurrency “block-lattice” state through a node being provided

as a web service (e.g. Etherscan for Ethereum, or any mobile/web

wallet for any cryptocurrency.) In the case of a fork, a malicious

third-party node is still able to present all blocks in the block-lattice

Technical Vulnerability Report

RED4SEC Page 12

in a manner which fully satisfies the transaction verification

requirements described in Section IV, Subsection I.

3. Implicit defenses against DoS and PoW precomputation. While

Section V of the specification acknowledges multiple attack scenarios which

can work in tandem to cause denial of service attacks, none of the

presented defenses sufficiently rule out the threats discussed.

In particular, Section V, Subsection F, which discusses “51% attacks”,

frequently makes speculative claims when discussing mitigations. Some of

these concerns are explored in more detail in Section 6 of this report.

5.5 Attack Scenario Evaluation

Nano’s threat model is derived implicitly from a set of attack vectors described

in Section V of the whitepaper. Having previously presented a summary of our

review of the attack vectors, we now examine each attack vector individually.

1. Block Gap Synchronization. Given that Nano relies on UDP-based

networking for high performance, the incorrect transmission of blocks

may occur. In order to remedy this, the Nano whitepaper states that “a

TCP connection must be formed with a bootstrapping node in order to

facilitate the increased amount of traffic” required for resynchronization.

Given how simple it can be for a network entity to cause UDP packet

desynchronization, it is possible that the need for multiple

resynchronizations could be artificially increased by an attacker as a way

to exacerbate a denial of service attack. This is not currently discussed

in the design and could be elaborated upon.

2. Transaction Flooding/Penny-Spend Attack. Spreading a single

transaction against infinitely smaller microtransactions is discussed. We

have nothing to add to this discussion.

3. Sybil Attack. While Nano’s voting mechanism does act to offset a sybil

attack, we again raise the concern that no real metrics are provided with

regards to the real-world usability or UX for the voting mechanism. Does

it occur automatically or is it precluded by user interaction? In the latter

case, how would user interaction be registered and interpreted, and how

could a lack of confirmation stall further blockchain progress?

4. Precomputed PoW Attack. While Nano does discuss the potential for

pre-calculating Proof of Work values, no real mitigation is provided.

Technical Vulnerability Report

RED4SEC Page 13

5. The 51% Attack. It is not clear how Nano’s voting mechanism can

prevent 51% attacks unless “representative voting”, discussed in

Section V, Subsection F, point 3, is implemented from the beginning of

the lifetime of the network. Furthermore, representative voting can

indeed have the effect of rendering 51% attack-like takeovers easier,

with the attacker simply focusing on the nodes with the highest levels

of representative authority.

5.6 Real World Viability and Scalability Claims

Aside from the points discussed above, it was found that the Nano whitepaper

adequately described a design which does achieve its real-world viability and

scalability claims.

Special network-level and cryptographic engineering considerations are taken

into account, and these were found to indeed help boost Nano’s real-world

performance benchmarks:

• A “block-lattice” design where transactions are connections between

otherwise discrete blockchains.

• Communication over small UDP packets, with blockchain-level

confirmations over the same medium.

• Proof of Work being restricted as an anti-spam measure instead of a

“mining” mechanism.

As mentioned in both Section 5 and 6, however, it is unclear how the voting

mechanism which Nano relies on would operate in real-world deployment and

whether it can sufficiently scale in order to make decisions that can keep up

with an arbitrary number of denial of service attacks.

This is especially important given that Nano remains susceptible to denial of

service attacks as discussed in the Nano whitepaper as well as in this report.

Technical Vulnerability Report

RED4SEC Page 14

5.7 Implementation Review

As part of the scope of this work, Red4Sec paid attention to the following

cryptographic primitives as implemented in Nano:

1. Ed25519 with Blake2b. The original Ed25519 implementation by

Daniel J. Bernstein is employed but with the Blake2b hash function used

instead of SHA-3.

Critically, Daniel J. Bernstein’s reference implementation performs

elliptic curve operations in constant time, thereby eliminating side

channel concerns. Using Blake2b instead of SHA-3 poses no security

concerns and is deemed completely safe.

2. Blake2. The original reference C implementation written by Samuel

Neves is used. This is considered to be benchmark for correct Blake2

implementations and thus no issues are found.

3. Argon2. Argon2 is deemed an excellent choice for this use case for the

same reasons as those described in the Nano whitepaper, and the

implementation is deemed safe. Again, the reference implementation is

used, offsetting security concerns.

4. Wallet key derivation. Wallet keys are derived deterministically from

256-bit secure pseudorandom seeds. BIP39/44 is used for mnemonic

seeds.

5. Wallet encryption. A review of the wallet encryption implementation

found that while AES-CTR was used, no specific precautions seem to be

undertaken for the prevention of nonce5 reuse.

Since AES-CTR is a stream cipher, nonce reuse under the same key can

have catastrophic consequences and should be avoided.

5.8 Impact and Attack Cost Evaluation

Nano claims the following when it comes to attack costs:

“One of the advantages in RaiBlocks for using balance weighted voting is for its

high attack cost; this cost is similar in Proof of Stake systems. The cost of attacking

a proof-of-work protocol is in proportion to global investment in mining hardware.

Given today’s environment if we estimate this at $1 billion the attack would entail

making a matching purchase of hardware putting the price tag at 1$ billion.

Technical Vulnerability Report

RED4SEC Page 15

Balance-weighted-voting attack cost is in proportion to the total market cap. If we

estimate this at $100 billion the attack would entail buying up 50% of the market

cap putting the price tag at $50 billion. To put this another way: only if global

investment in mining hardware exceeded the entire market cap of the currency

itself would this attack cost difficulty flip the other direction.”

While the above statement may be true in theory and especially if only Sybil

attacks or 51% attacks are taken into consideration, it does not account for

the potential for coordinated denial of service attacks to cause pressure on the

Nano ledger and force it to capitulate to an attacker. This is especially

important given the number of existing denial of service attack vectors,

documented earlier in this report as well as in the Nano whitepaper.

A stronger focus on Proof of Work as well as a potential switch from UDP to

TCP may act to restrict denial of service attack vectors, however the cost on

the general performance benchmarks of Nano remains unclear and should be

slated for future study.

5.9 Conclusions

We conclude that the whitepaper correctly presents a cryptocurrency design

that does indeed achieve its goals of high efficiency, high scalability and low

latency through the combination of cryptographic engineering and network

engineering considerations and optimizations.

A review of the cryptographic elements of Nano’s C++ implementation yielded

no significant findings. Nano exclusively employs the reference

implementations of state-of-the-art cryptographic primitives. Minor changes

are made to the signing primitive but are deemed completely safe.

A lack of documentation was spotted with regards to the wallet encryption

mechanism and this was documented in our report.

None of the findings in this report constitute a serious roadblock for

the real-world deployment of Nano as a cryptocurrency ledger. That

said, this report still documents underspecified shortcomings inherent to Nano,

including the inability to mine additional currency and a lack of clarity with

regards to the real-world functionality of the voting mechanism, which is

crucial for preventing Sybil attacks or other attacks on the ledger’s integrity.

Technical Vulnerability Report

RED4SEC Page 16

6. Network Performance Analysis

6.1 Summary

Nano has a great number of mechanisms to avoid and protect from system

attacks. However, the objective of the security audits carried out by Red4Sec

is to analyze all possible vulnerabilities both in the logic, protocol, and to

improve the level of security.

For this reason, some minor Denial of Service tests have been performed

against rai_node service to analyze the behavior and the availability of the

service when exposed to high traffic loads.

Distributed Denial of Service attacks are increasing in intensity and becoming

more damaging. The disrupt of services may cause loss of revenue and

reputation.

Availability is a critical aspect in any highly-distributed service, especially in

blockchain-based technologies. While blockchain technologies are resistant to

Distributed Denial of Services and other kind of abuses due to its distributed

nature, these technologies still have weak spots that can be exploited.

This section offers a small approximation of a Distributed Denial of Service

attack over Nano protocol.

These tests have been carried out by the Red4Sec team in a controlled

environment, more precisely against a clone server.

Technical Vulnerability Report

RED4SEC Page 17

6.2 Nano Protocol

In order to perform all the tests included in this report, the Nano protocol

has been previously analyzed and studied.

struct {
 // NANO Protocol
 uint8_t magicProtocol = 0x52;
 // (0x41 Test network; 0x42 Beta network; 0x43 Main network)
 uint8_t magicNetwork = 0x41/0x42/0x43;

// versionMax and versionMin, range of acceptable versions to relay or broadcast this
message to

 uint8_t versionMax;
 // version field indicates what version of the Nano protocol
 uint8_t version;
 // versionMin
 uint8_t versionMin;
 // messageType
 uint8_t messageType;
 // Extensions
 uint16_t extensions;
 };

 +------------+-------------------+--------------+-------------+---------+
 |messageType | Name | On Bootstrap | On Realtime | Version |
 +------------+-------------------+--------------+-------------+---------+
 | 0x00 | Invalid | Yes | Yes | 0+ |
 | 0x01 | Not_A_Type | ? | ? | 0+ |
 | 0x02 | Keepalive | No | Yes | 0+ |
 | 0x03 | Publish | No | Yes | 0+ |
 | 0x04 | Confirm_Req | No | Yes | 0+ |
 | 0x05 | Confirm_Ack | No | Yes | 0+ |
 | 0x06 | Bulk_Pull | Yes | No | ? |
 | 0x07 | Bulk_Push | Yes | No | ? |
 | 0x08 | Frontier_R | Yes | No | ? |
 | 0x09 | Bulk_Pull_Blocks | Yes | No | 11+ |
 | 0x0A | Node_ID_Handshake | No | Yes | 12+ |
 | 0x0B | Bulk_Pull_Account | Yes | No | 12+ |
 +------------+-------------------+--------------+-------------+---------+

Using the data provided by the Nano team, the existing documentation and

the wireshark filters, we have been able to build a laboratory to perform denial

of service attacks, and analyze the behaviour of Nano nodes when exposed to

these attacks.

Technical Vulnerability Report

RED4SEC Page 18

6.3 Performed Simulation Attacks

After thoroughly studying the protocol, Red4Sec proceeded to perform a series

of flood tests against the service using a burst of packets with the different

protocol commands. The main objective was to check the behaviour of the

nodes before a minor denial of service.

In all the tests carried out, the traffic was generated based on the standard

Nano protocol (packet header, commands, extensions, ...) so that the server

accepted it as legitimate traffic and tried to process it.

In each test, 50% of the traffic was generated conforming to the protocol

specification, but with modification to some values.

The other 50% was generated under the same conditions, but instead,

modified the values and their length in order to check the behaviour against

incorrect values and malformed packets (packet fuzzing).

The tests have been performed over TCP (Bootstrap) and UDP (Real Time),

for each command individually. On the other hand, an additional test

(Combined Test) has been carried out, mixing all the commands.

During the tests, CPU and memory usage have been compared with normal

values obtaining the following results.

First UDP Simulation

101542

146604

98570 95634 95634 99874

13611,362

31979,125
19313,29

27279,602 27279,602

13467,931

Keepalive Publish Confirm_Req Confirm_Ack ID Handshake Combined tests

UDP Traffic Load

Packets Sent Kb Sent % CPU

Technical Vulnerability Report

RED4SEC Page 19

Test Packets Kb Test duration % CPU % RAM

Keepalive 101542 13611.362 0:01:00 63.38 64.68

Publish 146604 3197.125 0:01:30 44.19 64.67

Confirm_Req 98570 1931.29 0:01:10 36.00 66.39

Confirm_Ack 95634 27279.602 0:01:00 48.25 66.26

ID Handshake 95634 27279.602 0:01:00 30.36 65.71

Combined tests 99874 13467.931 0:02:00 48.53 65.09

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

Keepalive Publish Confirm_Req Confirm_Ack ID Handshake Combined tests

CPU Usage

% CPU during test % Normal CPU

62,50

63,00

63,50

64,00

64,50

65,00

65,50

66,00

66,50

67,00

Keepalive Publish Confirm_Req Confirm_Ack ID Handshake Combined tests

RAM Usage

% RAM during test % Normal RAM

Technical Vulnerability Report

RED4SEC Page 20

First TCP Simulation

Test Packets Bytes Test duration % CPU % RAM

Bulk Pull 9094 144845 0:01:00 39.56 66.47

Bulk Push 8172 16352 0:01:00 28.31 66.08

Frontier Req 8045 63196 0:01:00 34.21 65.77

Bulk Pull Blocks 10989 703604 0:01:30 62.71 66.95

Bulk Pull Account 6651 349648 0:00:30 28.2 66.81

SYN Flood 26625 - 0:01:30 68.71 66.25

Bulk Pull Bulk Push Frontier Req Bulk Pull Blocks Bulk Pull Account SYN Flood

TCP Traffic Load

Packets Sent Bytes Sent % CPU

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

Bulk Pull Bulk Push Frontier Req Bulk Pull Blocks Bulk Pull Account SYN Flood

CPU Usage

% CPU during test % Normal CPU

Technical Vulnerability Report

RED4SEC Page 21

In the following tests, the Proof of Work (PoW) has been removed in order to

analyse the behaviour of the service by processing malformed packets that

meet the proof of work challenge.

Second UDP Simulation

Test Packets Kb Test duration % CPU % RAM

Keepalive 100900 13513.652 0:01:00 93.42 65.69

Publish 145108 31652.276 0:01:30 44.75 66.36

Confirm_Req 96608 18898.275 0:01:00 81.45 65.58

Confirm_Ack 93540 26687.399 0:01:00 83.08 64.79

ID Handshake 93540 26687.399 0:01:00 81.52 64.81

Combined tests 97258 13143.15 0:02:00 82.79 64.96

62,00

63,00

64,00

65,00

66,00

67,00

68,00

Bulk Pull Bulk Push Frontier Req Bulk Pull Blocks Bulk Pull Account SYN Flood

RAM Usage

% RAM during test % Normal RAM

100900

145108

96608 93540 93540 97258

13513,652

31652,276

18898,275
26687,399 26687,399

13143,15

Keepalive Publish Confirm_Req Confirm_Ack ID Handshake Combined tests

UDP Traffic Load

Packets Sent Kilobytes Sent % CPU

Technical Vulnerability Report

RED4SEC Page 22

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

Keepalive Publish Confirm_Req Confirm_Ack ID Handshake Combined tests

CPU Usage

% CPU during test % Normal CPU

62,50
63,00
63,50
64,00
64,50
65,00
65,50
66,00
66,50
67,00

Keepalive Publish Confirm_Req Confirm_Ack ID Handshake Combined tests

RAM Usage

% RAM during test % Normal RAM

Technical Vulnerability Report

RED4SEC Page 23

Second TCP Simulation

Test Packets Bytes Test duration % CPU % RAM

Bulk Pull 14046 223027 0:01:00 41.93 65.44

Bulk Push 12455 24904 0:01:00 63.68 65.33

Frontier Req 12280 96183 0:01:00 29.79 65.04

Bulk Pull Blocks 16233 1037308 0:01:30 34.18 65.10

Bulk Pull Account 9666 506912 0:00:30 106.13 65.56

SYN Flood 38682 - 0:01:30 72.70 65.70

Bulk Pull Bulk Push Frontier Req Bulk Pull Blocks Bulk Pull Account SYN Flood

TCP Traffic Load

Packets Sent Bytes Sent % CPU

0,00

20,00

40,00

60,00

80,00

100,00

120,00

Bulk Pull Bulk Push Frontier Req Bulk Pull Blocks Bulk Pull Account SYN Flood

CPU Usage

% CPU during test % Normal CPU

Technical Vulnerability Report

RED4SEC Page 24

6.4 Conclusions

After evaluating the results, it can be observed how the challenge of Work Test

(PoW) in the packets properly filters most of the load while processing

malformed packages, even when the service does not include any type of

protection against distributed denial of service attacks.

Even though the behaviour of the service is quite acceptable, it is always

advisable to establish protection measures on these types of attacks. This

is due to the possibility of identifying and locating the public IP addresses of

the representatives through the behaviour of the network and focusing the

attacks against them.

Notice that these performed tests only offer a small-scale approach to the

impact of a similar attack.

63,00

63,50

64,00

64,50

65,00

65,50

66,00

Bulk Pull Bulk Push Frontier Req Bulk Pull Blocks Bulk Pull Account SYN Flood

RAM Usage

% RAM during test % Normal RAM

Technical Vulnerability Report

RED4SEC Page 25

7. Source Code Vulnerabilities

In this section, you can find a detailed analysis of the vulnerabilities

encountered during the source code audit.

7.1 Vulnerability Severity

The risk classification has been made on the following 5-value scale:

• Vulnerabilities that possess the highest impact over the systems,
services and/or sensitive information.
The existence of this vulnerabilities is dangerous and should be fixed as
soon as possible.

Critical

• Vulnerabilities that could compromise severely compromise the service
or the information it manages even if the vulnerability requires expertise
to be exploited.

High

• Vulnerabilities that on their own can have a limited impact and/or that
combined with other vulnerabilities could have a greater impact.

Medium

• This vulnerabilities do not supose a real risk for the systems.
Also includes vulnerabilities which are extremely hard to exploit or whose
impact on the service is low.

Low

• It covers various characteristics, information or behaviours that can be
considered as inappropiate, without being considered as vulnerabilities by
themselves.

Informative

Technical Vulnerability Report

RED4SEC Page 26

7.2 Methodology

All the tests and processes carried out for the achievement of the present

project, are included in methodologies and standards recognized and accepted

by the international community of software and communications security.

Some examples are WASC (Web Application Security Consortium), MITRE-

CWE that lists the most widespread weaknesses of software, as well as SEI

CERT C/C++ (Software Engineering Institute - Carnegie Mellon University)

for the specific taxonomies of C and C++ that are enumerated below:

1. Declarations and Initialization (DCL)

2. Expressions (EXP)

3. Integers (INT)

4. Containers (CTR)

5. Characters and Strings (STR)

6. Memory Management (MEM)

7. Input Output (FIO)

8. Exceptions and Error Handling (ERR)

9. Object Oriented Programming (OOP)

10. Concurrency (CON)

11. Miscellaneous (MSC)

Additionally, other methodologies have been used in addition to the experience

of the team, in order to prioritize and perform the tests considered more

relevant.

Technical Vulnerability Report

RED4SEC Page 27

7.3 Coverage

The code audit focuses on the most important fragments of code, which have

been previously identified in the scope and those contained in the folder:

• https://github.com/nanocurrency/nano-node/blob/master/nano/

Within this folder, the different files have been analyzed in an unequal way,

paying special attention to the scope requested by Nano, those related to the

classes rai::active_transactions, rai::elections and the secure folder.

Below is an estimate of the reviewed percentages:

Filename % Filename %

lib/blocks.cpp 100 node/bootstrap.cpp 100

lib/blocks.hpp 100 node/bootstrap.hpp 100

lib/config.hpp 100 node/cli.cpp 100

lib/errors.cpp 40 node/cli.hpp 100

lib/errors.hpp 100 node/common.cpp 100

lib/expected.hpp 100 node/common.hpp 100

lib/interface.cpp 40 node/lmdb.cpp 100

lib/interface.h 50 node/lmdb.hpp 100

lib/numbers.cpp 20 node/logging.cpp 100

lib/numbers.hpp 100 node/logging.hpp 100

lib/plat/ 60 node/nodeconfig.cpp 100

lib/utility.cpp 60 node/nodeconfig.hpp 100

lib/utility.hpp 100 node/node.cpp 100

lib/work.cpp 80 node/node.hpp 100

lib/work.hpp 100 node/openclwork.cpp 100

node/openclwork.hpp 100 node/xorshift.hpp 100

node/peers.cpp 100 rai_node/daemon.cpp 80

https://github.com/nanocurrency/nano-node/blob/master/nano/

Technical Vulnerability Report

RED4SEC Page 28

node/peers.hpp 100 rai_node/daemon.hpp 100

node/plat/ 60 rai_node/entry.cpp 100

node/portmapping.cpp 100 rai_wallet/entry.cpp 100

node/portmapping.hpp 100 rai_wallet/icon.hpp 100

node/rpc.cpp 90 rai_wallet/plat/ 60

node/rpc.hpp 90 secure/blockstore.cpp 100

node/rpc_secure.cpp 60 secure/blockstore.hpp 100

node/rpc_secure.hpp 70 secure/common.cpp 100

node/stats.cpp 90 secure/common.hpp 100

node/stats.hpp 90 secure/ledger.cpp 100

node/testing.cpp 70 secure/ledger.hpp 100

node/testing.hpp 70 secure/plat/ 60

node/voting.cpp 100 secure/utility.cpp 100

node/voting.hpp 100 secure/utility.hpp 100

node/wallet.cpp 100 secure/versioning.cpp 100

node/wallet.hpp 100 secure/versioning.hpp 100

node/working.hpp 100 rai_node/daemon.cpp 80

Technical Vulnerability Report

RED4SEC Page 29

7.4 Automatic Analysis

During any audit process, in addition to the manual analysis, an automatic

static code analysis is always performed. In this case, we have used one of

the most in-demand tools: Fortify Static Code Analyzer.

The main goal is to ensure that all procedural aspects of a code review are

covered.

The following table depicts a summary of all issues grouped vertically by

Fortify category. For each category, the total number of issues is shown by

Fortify Priority Order, including information about the number of audited

issues.

Category Fortify Priority Total Issues

 Critical High Medium Low

Buffer Overflow 38 23 0 0 61

Buffer Overflow: Format String 0 3 0 0 3

Buffer Overflow: Off-by-One 1 0 0 0 1

The automatic analysis has detected some issues that have been reviewed and

discarded as false positives. This information can be found in Annex B.

However, a comprehensive manual review of the code has been carried out.

The table below shows the list of identified vulnerabilities and whether or not

they are out of scope or if they have been classified as false positive:

Filename Occurrences Status

lmdb/libraries/liblmdb/mdb.c 1 Out of scope

miniupnp/miniupnpc/minissdpc.c 35 Out of scope

miniupnp/miniupnpc/miniupnpc.c 3 Out of scope

Technical Vulnerability Report

RED4SEC Page 30

7.5 Manual Analysis

During the code audit, different phases have been carried out for the correct

understanding of the project as well as the code that implements it.

After first contact, the existence of several third-party libraries for the

management of information in memory, UPnP protocol management, as well

as other functionalities are observed.

First of all, we proceed to analyze all the public information of the project,

from the Whitepaper of the project to the developer’s documentation.

Multiple changes are made in the compilation parameters to extract the

maximum information at the compile- time. The obtained results will be later

evaluated at the debugging and code audit phase.

The last step and one of the most important aspects of the manual analysis is

to prepare the fuzzing environment.

Once the previous stages have been carried out, the main code is audited,

avoiding the third-party libraries contained therein. We have focused on the

classes rai::active_transactions and rai::elections in addition to the code

located at secure folder.

All the code was revised several times, dividing this process into several

phases to analyze the code based on different approaches. The most important

and most suspicious areas were identified for further analysis in debugging

mode.

The phases are divided into:

1. Identification of sensitive areas:

o At this point, the zones of the code that handle data, structures

and types of data that contain sensitive information, such as

weights and voting system, are identified. It is important to also

consider the persistence of data, and concurrent access to

memory zones.

2. Evaluation of data types and expressions:

o Once the sensitive areas are identified, conditional blocks or loops

that control access to those areas are identified. The expressions

Technical Vulnerability Report

RED4SEC Page 31

and types of data are analysed to identify if it is possible to

manipulate the restrictions by modifying the value of the data, and

of it has tried to exceed the limits in the loops and cause

uncontrolled failures.

3. Application logic:

o Once the operation of the software is understood, situations that

could be ambiguous without the appropriate context are identified.

From this point, attacks are conducted to test the logic of the

application and unexpected behaviour that could be caused.

4. Concurrent access:

o The critical areas are listed and the concurrent accesses are

analysed to verify that the flow of access to them is correctly

controlled. It is checked if the semaphores are properly established

so that they block and unblock their access properly.

5. Dynamic memory management:

o Identify code areas that dynamically manage data and track it.

The objective is to identify incorrect memory management or

memory zones not released. All this could cause excessive and

uncontrolled memory consumption problems.

Technical Vulnerability Report

RED4SEC Page 32

7.6 List of vulnerabilities

Below we have a complete list of the vulnerabilities detected by Red4Sec,

presented and summarized in a way that can be used for risk management

and mitigation.

Table of vulnerabilities

Id. Vulnerability Risk State

1 Improper Validation of Array Index High Pending

2 Incorrect Type Conversion or Cast Informative Pending

3 Code Styling Informative Pending

Technical Vulnerability Report

RED4SEC Page 33

7.7 Vulnerability details

In this section, we provide the details of each of the detected vulnerabilities

indicating the following aspects:

• Category

• Active

• Risk

• Description

• Recommendations

Technical Vulnerability Report

RED4SEC Page 34

1 - Improper Validation of Array Index

Category Active Risk

Insecure library mdb.c:7118
 High

CWE-129

Description:

During the security audit, Red4Sec has detected that some parts of the source

code do not have an appropriate validation.

The use of an array has been detected without the proper checking of limits. After

an exhaustive analysis of the code it has been observed that it belongs to a third-

party library: lmdb, which is not in its latest version within the project repository.

The project rai_blocks uses the version 0.9.21, while the 0.9.22 is the latest

version. This updated version has multiple updates that should be mitigated.

Technical Vulnerability Report

RED4SEC Page 35

1 - Improper Validation of Array Index

In the following image, you can see the fix-commit of the vulnerability

detected during the audit.

The fragment of code affected is in src/lmdb/libraries/liblmdb/mdb.c

References:

• https://github.com/LMDB/lmdb/compare/LMDB_0.9.21...LMDB_0.9.22
• https://github.com/LMDB/lmdb/commit/98b2910ee89e9fbc6c2df00d3dd35a

eca7b86daf

Recommendations:

• Check the limits properly, managing the correct output in case of error.

• Keep the code updated, especially when it refers to third-party libraries.

https://github.com/LMDB/lmdb/compare/LMDB_0.9.21...LMDB_0.9.22
https://github.com/LMDB/lmdb/commit/98b2910ee89e9fbc6c2df00d3dd35aeca7b86daf
https://github.com/LMDB/lmdb/commit/98b2910ee89e9fbc6c2df00d3dd35aeca7b86daf

Technical Vulnerability Report

RED4SEC Page 36

2 - Incorrect Type Conversion or Cast

Category Active Risk

Insecure Cast or type

conversion
node.cpp:2691-2694

 Informative

CWE-704

Description:

It has been observed that depending on the compiler or compiler options, it is

likely that data types are converted in an inappropriate manner.

The following example belongs to src/rai/node/node.cpp

Notice that both supply and weight are of the type rai::uint128_t while the value

1000 is taken as signed int.

Technical Vulnerability Report

RED4SEC Page 37

2 - Incorrect Type Conversion or Cast

To carry out the comparison, supply is first divided by 1000. At this point, the default

action is to convert the variable of smaller capacity, to one of greater capacity, and

perform the operation, which converts unsinged int to uint128_t, losing the sign.

Since it is not specified, the decision on the comparison depends on the compiler's

policy, being able to:

1. Prioritize maintaining the sign with respect to the value.

2. Convert supply into signed int and lose its value.

When making the comparison, it is possible to extend this conversion to the variable

weight and this could cause unexpected situations and with it execute the code of

the conditional, when in reality it should not.

References:

• https://github.com/nanocurrency/nano-
node/blob/1caec639ad8cf66a3dc90092e280a043e5dbb86b/rai/node/node.cp

p#L2985
• https://github.com/nanocurrency/nano-

node/blob/1caec639ad8cf66a3dc90092e280a043e5dbb86b/rai/node/node.cp

p#L2988

Recommendations:

• It is recommended to carry out an exhaustive verification of all the errors
that the vulnerability’s code object could produce.

• Conduct the conversions explicitly

https://github.com/nanocurrency/nano-node/blob/1caec639ad8cf66a3dc90092e280a043e5dbb86b/rai/node/node.cpp#L2985
https://github.com/nanocurrency/nano-node/blob/1caec639ad8cf66a3dc90092e280a043e5dbb86b/rai/node/node.cpp#L2985
https://github.com/nanocurrency/nano-node/blob/1caec639ad8cf66a3dc90092e280a043e5dbb86b/rai/node/node.cpp#L2985
https://github.com/nanocurrency/nano-node/blob/1caec639ad8cf66a3dc90092e280a043e5dbb86b/rai/node/node.cpp#L2988
https://github.com/nanocurrency/nano-node/blob/1caec639ad8cf66a3dc90092e280a043e5dbb86b/rai/node/node.cpp#L2988
https://github.com/nanocurrency/nano-node/blob/1caec639ad8cf66a3dc90092e280a043e5dbb86b/rai/node/node.cpp#L2988

Technical Vulnerability Report

RED4SEC Page 38

3 - Code Styling

Category Active Risk

Bad practices Nano Source Code
 Informative

CWE-398

Description:

It has been possible to verify that, in spite of good quality code, there is a lack of

order and structure that makes reading and analyzing the code difficult.

This is a very common bad practice, especially in these types of projects that are

continually changing and improving. This is not a vulnerability in itself, but it helps

to improve the code and reduces the appearance of new vulnerabilities.

As a reference, it is always recommendable to apply some coding style/good

practices that can be found in multiple standards such as:

• "Google C++ Style Guide"
(https://google.github.io/styleguide/cppguide.html).

• "ISOCPP Core Guidelines" (https://isocpp.org/wiki/faq/coding-standards).

These references are very useful to improve quality software. Some of those

practices are common and a popular accepted way to develop software.

In this project, the team found some issues related with the coding style that

should be taken into account. It’s highly recommended to follow the coding style

good practices from any formal standard.

For example:

"A very common case is to have a pair of files called, e.g., foo_bar.h and

foo_bar.cc, defining a class called FooBar."

References:

• https://google.github.io/styleguide/cppguide.html#File_Names

https://google.github.io/styleguide/cppguide.html#File_Names

Technical Vulnerability Report

RED4SEC Page 39

3 - Code Styling

Recommendations:

• Implement best practices to optimize code performance.

• Follow code style/good practices during the whole development process.

Technical Vulnerability Report

RED4SEC Page 40

8. Annexes

In the annexes, information referenced in the document is included as well as

information related to the security review performed.

The information found in the annexes mainly includes:

• List of conducted tests.

Technical Vulnerability Report

RED4SEC Page 41

Annex A List of conducted tests

The following states have been defined and used during the execution of the

review plan, to manage the revision process.

Test State

The test has been scheduled but has not yet

started.
(P) Pending

The execution of the tests has been suspended

since none of the necessary elements for its

realization exists, given its low priority or being

outside the scope of the audit.

(S) Suspended

The test has been performed during the test

battery.
(A) Accomplished

The test has been excluded after being previously

agreed with the client.
(D) Deleted

The final status of the agreed tests in the Revision Plan, once finished, is as

follows:

Conducted Tests State Observations

INPUT VALIDATION

Cross-Site Scripting S

XPath Injection S

LDAP Injection S

Buffer Overflow A

Memory Corruption A

SOURCE CODE DESIGN

Insecure field scope A

Insecure method scope A

Insecure class modifiers A

Unused external references A

Technical Vulnerability Report

RED4SEC Page 42

Redundant code A

INFORMATION LEAKAGE AND IMPROPER ERROR HANDLING

Unhandled exception A

Routine return value usage A

NULL Pointer dereference A

Insecure logging A

DIRECT OBJECT REFERENCE

Direct reference to database data A

Direct reference to filesystem A

Direct reference to memory A

RESOURCE USAGE

Insecure file modifying A

Insecure file deletion A

Race conditions A

Memory leak A

Unsafe process creation A

CRYPTOGRAPHY IMPLEMENTATIONS

Key exchange algorithms A

Cryptographic primitives A

Account Management and transfers A

Wallet (Seed Generation, Key Derivation,

Encryption)
A

Cryptographic Complements A

BEST PRACTICES VIOLATION

Insecure memory pointer usage A

NULL Pointer dereference A

Pointer arithmetic A

Variable aliasing A

Unsafe variable initialization A

Missing comments and source code

documentation
A

WEAK SESSION MANAGEMENT

Not checking for valid sessions upon HTTP

request
S

Not invalidating session upon an error

occurring
S

Not issuing a new session upon successful

authentication
S

Passing cookies over non-SSL connections

(No Secure Flag)
S

Invest in Security, invest in your future

