
abdk.consulting

ABDK
CONSULTING
RESEARCH
REPORT

EQUIHASH-NANO

Equihash-Nano
Research Report∗

Alex Biryukov and Dmitry Khovratovich†

February 2021

1 Introduction

1.1 Original design

Equihash is a proof of work algorithm which explicitly targets devices with significant
amounts of memory. It has 3 parameters (n, k, d), which together define the time and
memory requirements of the algorithm. A regular implementation of Equihash requires:

•
c12

n
k+1+k (1)

bytes of memory, organized into the array of 2
n

k+1+1 elements of n bits each. Here
c1 is an optimization constant.

• Time needed to sort this array k2d times.

• Time needed to initialize this array 2d times making total 2
n

k+1+d calls to the hash
function H (universally defined as Blake2b).

A solution to the proof of work is a prefix V and set of 2k n
k+1 -bit indices (with some extra

conditions) x1, x2, . . . , x2k such that

H(V ||x1)XORH(V ||x2)XOR · · · XORH(V ||x2k) = 0. (2)

The size of the solution is 2k(n
k+1 + 1) index bits and some v bits from prefix (set to 160

in the original paper, but can be reduced).

For d = 0 the regular implementation computes 2
n

k+1+1 hashes and stores them into
an array. Then the array is processed and sorted k times. The constant c1 comes from
various ways to store the intermediate array values and varies slightly for di↵erent (n, k)
pairs.

The authors of Equihash suggest an implementation with c1 = 1.4. Concretely, they
show how to compute Equihash with (n = 144, k = 5) with 1.4 · 2

144
6 +5 = 700 Mbytes of

RAM.
∗Work in this paper is result of best e↵ort during limited period of evaluation and is provided without

warranty of any kind, express or implied, including but not limited to the warranties of merchantability,
fitness for a particular purpose, non-infringement, and any warranty that these data and format are free
from defects. In no event shall the authors or copyright holders be liable for any claim, damages or other
liability. The name of the authors shall not be used in advertising or otherwise to promote the sale, use or
other dealings without prior written authorization from them.

†The second author is a�liated with ABDK Consulting, dmitry@abdkconsulting.com

1

1.2 Memory-hardness of Equihash

Equihash is designed so that a prover that stores fewer hashes in an array gets a signif-
icant penalty. The underlying generalized birthday problem already enjoys fair memory
hardness, but Equihash was additionally strengthened so that time-memory tradeo↵s for
GBP do not apply directly. As proven in the Equihash paper, when generating q times as
few entries per array, the total computation time grows by the factor

C(q, k) = (4qk)k/2.

One may notice that the penalty grows exponentially in k, but polynomially in q. Note that
the degree of the polynomial grows not that fast: for k = 2, 3 the penalty is subquadratic.

1.3 Nano requirements

• Small proof (our current proof size is 16 bytes and we don’t want to go too much
larger)

• Fast verification to minimize resource usage

• Memory-hardness to ensure fairness with relation to specialized hardware. Use
enough memory to make specialized hardware prohibitively expensive

• Free of amortization to avoid an artificially high average di�culty and centralization
issues

• Adjustable di�culty

• Su�ciently fast at base di�culty

• Be simple and mathematically proven

2 Research Goals

We were asked the following questions:

1. What is the security status of Equihash with small k parameters (2,3,4)?

2. What would be the recommended memory requirements?

3. What is the performance of these instances in terms of minimum latency?

4. How can we protect from potential ASIC tailored for some of these instances but
remain GPU-friendly.

3 Current usage of Equihash

There exist several classes of Equihash implementations:

• Software implementations;

• GPU implementations.

• ASIC implementations.

2

Software implementations Although GPU implementations exist for all practically
used parameters of Equihash, and exceed the software ones in performance, the latter
remain a viable choice for miners equipped only with a PC. The reference Equihash im-
plementation by its authors is only of theoretical interest, as it is not optimized.

Practically interesting implementations are those that participated in the Zcash Equi-
hash challenge in the fall of 2016 (and their further improvements). This challenge called
both for GPU and CPU implementations. At that moment, the Zcash team considered
two options: (n = 200, k = 9) (we call EZ in the further text as it was eventually chosen)
and (n = 144, k = 5) (we denote it by EB as it was later selected for Bitcoin Gold and
other currencies), and both were asked to be implemented.

The winner, the xenoncat implementation uses 180 MB of RAM for parameters (n =
200, k = 9) due to several important optimizations, among which was the storage of colli-
sion indices instead of actual values. If we substitute the memory requirements into Eq. (1),

we obtain c1 = 227.5/2
200
10 +9 = 0.35. The software performance was 2-3 solutions/second

(Sol/s) depending on the machine, in a single-threaded version. The runner-up, tromp-
miner, achieved similar performance (144 MB of RAM for EZ , thus setting c1 to 0.3) with
similar algorithmic improvements. Notably, multithreaded versions were able to perform
as fast as 27 Sol/s, thus indicating that the memory bandwidth is not fully utilized in this
particular instance.

It turned out, however, that c1 is not actually a constant for other (n, k) instances,
at least for this particular set of algorithms. The trompminer uses 2.6 GB of RAM for
EB parameters, implying c1 = 5.2. This indicates that the formula for the memory
requirements should be adjusted from Eq. (1) and replaced with

M(n, k) ⇡ 2
n

k+1+log2 n (3)

which matches the performance of both EB and EZ provers, the change being due to
indexing optimization.

3.1 Equihash instances used in practice

The Zcash team eventually selected the EZ parameters and were followed by a few other
blockchain protocols. The decision was somewhat controversial as it was advised already
back in 2016 that the memory requirements are rather low and ASIC implementations
may follow.

Another parameter set, EB was eventually chosen by several Bitcoin forks (Bitcoin
Gold, BitcoinZ) and other projects (SafeCoin, Zelcash), which explicitly claimed the goal
of making ASICs less advantageous. Indeed, EZ ASIC miners have appeared on the market
in 2018, whereas to the best of our knowledge there is no ASIC for EB. This fact can
be explained, of course, not only by bigger memory requirements, but also by the bigger
market share of Zcash (about 5x at the end of 2020), which makes ASICs more profitable
in the latter case. Here is a table of Equihash instances used in various projects (sorted
by available power on Mining Rig Rentals):

3.2 Equihash GPU provers

There is an extensive list of Equihash EZ GPU provers. They originated in the Zcash
challenge (2016), from which we know that the memory consumption of GPU provers is
similar to the CPU ones. For example, the SilentArmy GPU prover uses two tables of size
225 3-byte hashes plus tables of recursive references, thus totalling about 200 MB. There

3

n k Project Available power Best price in BTC per KH/D
200 9 Zcash 557 MH 0.0000037
144 5 BTG (Zhash) 9.1 MH 0.0015
144 5S BEAM V3 654KH 0.0046
210 9 Aion 70 KH 0.00055
192 7 ZCL, YEC 20 KH 0.002
125 4 ZEL 18.6 KH 0.0025
150 5 Grimm 10.25KH 0.053

Table 1: Example of rentable Equihash power (prices in BTC as of 3.01.2021).

is little information on the memory usage by other GPU provers but we expect it to be
on par with SilentArmy.

The production rate and costs of EZ GPU provers are far better than those of the
CPU ones. The highest solution rate reaches 800 Sol/s on GTX 1080, which translates to
3 Sol/Wt.

There is far less information on the EB GPU provers. It is reported that the same
GTX 1080 produces 60-80 Sol/s, which indicates the factor of 10-12. Taking into account
that the EB provers are not as optimized as EZ ones, we see that the solution finding time
for the same k is proportional to the memory requirements, and can be approximated for
this particular GPU as

T (n, k) ⇡ k · 2
n

k+1�34 (4)

3.3 Equihash ASICs

Equihash EZ ASICs were pioneered by BitMain, and later joined by InnoSilicon. The
performance significantly exceeds the best GPU provers and reaches 420 KSol/s on a
1.5kWt ASIC miner. As a result, EZ ASICs are about 90x more energy e�cient than
GPUs (and about 500x more e�cient than laptop CPUs).

To the best of our knowledge, there is no ASIC for EB Equihash instance. However,
we may estimate the potential ASIC advantage based on a Ethash miner (Ethereum)
produced by Bitmain and delivering 250 KH/J, whereas best GPU Ethash miners deliver
200 KH/J, i.e. the same. We conclude that ASICs for this big memory size are marginally
more e�cient, though it can be partly explained by specifics of Ethash.

4 Equihash with small proofs

In this section we consider the Equihash instances that provide short proofs, concretely
with k = 2, 3, 4.

4.1 Instances with small k

Assuming the condition that k + 1 divides n, we obtain a list of candidate instances
for memory requirements ranging from 1 to 16 GB. We calculate the expected memory
requirements using formula Eq. (3) and extrapolating the GPU performance from Eq. (4).

We also provide a time-memory tradeo↵ table, which demonstrates how computation
amount grows with the reduction in memory:

Taking both tables into account we notice the following patterns:

4

n k Exp. memory (GB) Proof size (B) Exp. GPU perf. (Sol/s)
72 2 1.2 12.5 256
75 2 2.4 13 128
78 2 4.9 13.5 64
81 2 10.1 14 32
96 3 1.5 25 170
100 3 3.1 26 85
104 3 6.5 27 42
108 3 13.5 28 21
116 4 1 49 222
120 4 1.9 50 128
124 4 3.4 52 73
128 4 6.1 54 42
132 4 10.9 55 24

Bitcoin Gold
144 5 2.2 100 102

Zcash
200 9 0.2 1344 910

Memory reduction
k 1/2 1/4 1/q
2 16 32 8q
3 118 333 (12q)1.5

4 1024 4096 256q2

• The setting k = 2 seems to provide a too low protection against memory reduction
attacks. It may become possible to design ASICs that use significantly less memory
than intended but winning due to smaller chip size. We also suspect that there might
appear time-memory tradeo↵ research directly targeting the k = 2 setting.

• The setting k = 4 seems to have little advantage over k = 3 in terms of GPU
performance and memory requirements.

5 Suggestions for Nano

Here we are in a di↵erent use-case compared to projects that use PoW mining for con-
sensus. Nano needs PoW as a spam and DDoS protection mechanism. In typical PoW
setting it is miners with PCs/GPUs vs ASIC miners; if used as spam prevention it is
regular users sending few transactions per minute vs spammers/attackers, sending a lot.
On the other hand hardware requirements for sending transaction should be reasonable
for all users (mobile, low-end GPUs). So PoW for Nano needs relatively high time com-
plexity (but might be good to have lower power consumption) as well as high memory as
botnet-protection against massively parallel adversary. The issue of gap between various
plaforms (CPU/GPU/FPGA/ASIC) is of lesser concern than in mining case (i.e. a factor
10-100 between ASIC and regular GPU would kill GPU mining in a typical cryptocurrency
but might be tolerable for Nano usecase). However one important consideration for Nano
usecase is not to run PoW which is already used by another cryptocurrrency for mining.

5

The reasons are two-fold: not to be prone to commodity ASICs developed for this other
cryptocurrency and not to be vulnerable for hash-power rentals like Nicehash. One clear
scenario is Botnet/DoS, ledger spamming and flooding the voting representatives. We
may expect that the ASIC manufacturing specifically for Nano might not be a threat per
se. The reason is that the upfront cost of several millions for ASIC manufacturing in order
to disrupt the network, without clear financial gain for the adversary, might not be worth
it. This kind of attack is also hard to perform in a very distributed fashion (compared
to botnet), so it might be easier to defend against by using network administration tools.
We also assume that there is little threat to the safety of the consensus protocol coming
from dust transactions, though they may e↵ect liveness.

Having this perspective we can revise the typical PoW requirements (for ex. listed in
the Section 3.2 of the Egalitarian computing paper):

• It must be amortization-free, i.e. producing q outputs should be q times as expensive;

• Prover-verifier asymmetry. Solution should be verified quickly using little memory
in order to prevent DoS attacks on the verifier.

• ”The time-space tradeo↵s must be steep to prevent any price-performance reduc-
tion”. However probably not as steep as for the mining case – strongly depends on
if Nano-targeted ASICs are a threat.

• ”The time and memory parameters must be tunable independently to sustain con-
stant mining rate”. This is probably good to have feature, since it is good if network
would be able to automaticaly adjust PoW computational di�culty based on the
transaction tra�c (or maybe even geo-location specific).

• ”To avoid a clever prover getting advantage over the others the advertised algorithm
must be the most e�cient algorithm to date (optimization-freeness)”. More relaxed
than in mining case.

• ”The algorithm must be progress-free to prevent centralization: the mining process
must be stochastic so that the probability to find a solution grows steadily with time
and is non-zero for small time periods.” This requirement doesn’t look relevant in
Nano case.

• ”Parallelized implementations must be limited by the memory bandwidth.” This is
again an anti-ASIC requirement, relevant if ASICs are a threat.

• Solution should be very short (this is Nano-specific requirement), ex. 16 bytes.

• It might be a consideration to reduce power consumption of PoW to make it more
friendly to mobile battery-powered devices.

5.1 Most e↵ective parameter sets

Given the strong requirements on minimising the proof size, we suggest using k = 3 as
the first choice for Nano-Equihash, as k = 2 admits too weak time-memory tradeo↵s. The
proof size would range from 25 to 28 bytes, and memory requirements would range from
1.5 GB (n = 96, k = 3) to 13.5 GB (n = 108, k = 3). Further increase of n is possible.

Nano is able to adjust both memory requirements and computation time dynamically
by updating n and d, respectively. Note that a change to d does not require a prover code
change.

6

We estimate the GPU provers finding at least a dozen of solutions per second so that
Nano can have multiple blocks produced and verified per second if needed.

5.2 ASIC protection by volatility

Nano may want to explicitly allow dynamic change of the n parameter, thus varying the
memory requirements and making the job of ASIC designers harder. Unfortunately the
memory change won’t be granular enough: only doubling and halving would be possible.
To allow for a more granular change many more parameters should be supported.

6 Further research

In this section we briefly overview the directions for future research, that may be relevant
to the Nano usecase.

1. The applicability of improved GBP time-memory tradeo↵s to Equihash solvers. Our
intuition is that they do not apply easily otherwise the authors would claim that,
but it might be interesting to explore deeper.

2. Tuning the tradeo↵s in the original Equihash paper for k = 3 case. Small improve-
ments can be expected.

3. Testing existing CPU and GPU provers for EB and EZ parameters on modern
desktops, laptops, GPUs, and cloud computing services. It may turn out that new
optimizations cut o↵ a few percent of the M(n, k) value.

4. Laying o↵ a potential ASIC architecture for some parameters, e.g. (100, 3), and
estimating its performance and energy consumption. This can be an expensive test.

7

